Modular Neural Network Design For The Problem Of Alphabetic Character Recognition

نویسندگان

  • Brent Ferguson
  • Ranadhir Ghosh
  • John Yearwood
چکیده

This paper reports on an experimental approach to find a modularized artificial neural network solution for the UCI letters recognition problem. Our experiments have been carried out in two parts. We investigate directed task decomposition using expert knowledge and clustering approaches to find the subtasks for the modules of the network. We next investigate processes to combine the modules effectively in a single decision process. After having found suitable modules through task decomposition we have found through further experimentation that when the modules are combined with decision tree supervision, their functional error is reduced significantly to improve their combination through the decision process that has been implemented as a small multilayered perceptron. The experiments conclude with a modularized neural network design for this classification problem that has increased learning and generalization characteristics. The test results for this network are markedly better than a single or stand alone network that has a fully connected topology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

Learning Algorithms for RAM-based Neural Networks

Alistair Ferguson1 Laurence C W Dixon2 Hamid Bolouri1 1 Engineering Research and Development Centre & 2 Numerical Optimisation Centre University of Hertfordshire, College Lane, Hat eld, Hertfordshire, UK Abstract RAM-based neural networks are designed to be readily and e ciently implemented in hardware. The desire to retain this property in uences the design of learning algorithms. Reverse di e...

متن کامل

معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی

In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJPRAI

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2005